Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

???searchArticles.header???



Filter by Date: Year(4-digits)   to 

???application.search.numResults???


Alphabetic Search:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

???manualAddArticle.find??? ???manualAddArticle.link.add???


???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 ???pagination.result.next???

( ???images.icon???)
Search Results

Xenopus Oocyte's Conductance for Bioactive Compounds Screening and Characterization., Cheikh A, Tabka H, Tlili Y, Santulli A, Bouzouaya N, Bouhaouala-Zahar B, Benkhalifa R., Int J Mol Sci. April 27, 2019; 20 (9):                           


Xenopus oocytes as a heterologous expression system for analysis of tight junction proteins., Vitzthum C, Stein L, Brunner N, Knittel R, Fallier-Becker P, Amasheh S., FASEB J. April 1, 2019; 33 (4): 5312-5319.


Xenopus slc7a5 is essential for notochord function and eye development., Katada T, Sakurai H., Mech Dev. February 1, 2019; 155 48-59.                


Xenopus tropicalis: Joining the Armada in the Fight Against Blood Cancer., Dimitrakopoulou D, Tulkens D, Van Vlierberghe P, Vleminckx K., Front Physiol. January 1, 2019; 10 48.    


Xenbase: Facilitating the Use of Xenopus to Model Human Disease., Nenni MJ, Fisher ME, James-Zorn C, Pells TJ, Ponferrada V, Chu S, Fortriede JD, Burns KA, Wang Y, Lotay VS, Wang DZ, Segerdell E, Chaturvedi P, Karimi K, Vize PD, Zorn AM., Front Physiol. January 1, 2019; 10 154.          


Xenopus Resources: Transgenic, Inbred and Mutant Animals, Training Opportunities, and Web-Based Support., Horb M, Wlizla M, Abu-Daya A, McNamara S, Gajdasik D, Igawa T, Suzuki A, Ogino H, Noble A, Centre de Ressource Biologique Xenope team in France, Robert J, James-Zorn C, Guille M., Front Physiol. January 1, 2019; 10 387.        


Xenopus: Driving the Discovery of Novel Genes in Patient Disease and Their Underlying Pathological Mechanisms Relevant for Organogenesis., Hwang WY, Marquez J, Khokha MK., Front Physiol. January 1, 2019; 10 953.    


Xenopus laevis FGF16 activates the expression of genes coding for the transcription factors Sp5 and Sp5l., Elsy M, Rowbotham A, Lord H, Isaacs HV, Pownall ME., Int J Dev Biol. January 1, 2019; 63 (11-12): 631-639.            


Xenopus SOX5 enhances myogenic transcription indirectly through transrepression., Della Gaspera B, Chesneau A, Weill L, Charbonnier F, Chanoine C., Dev Biol. October 15, 2018; 442 (2): 262-275.                    


Xenopus laevis macrophage-like cells produce XCL-1, an intelectin family serum lectin that recognizes bacteria., Nagata S., Immunol Cell Biol. September 1, 2018; 96 (8): 872-878.


Xbra and Smad-1 cooperate to activate the transcription of neural repressor ventx1.1 in Xenopus embryos., Kumar S, Umair Z, Yoon J, Lee U, Kim SC, Park JB, Lee JY, Kim J., Sci Rep. July 30, 2018; 8 (1): 11391.                


Xpo7 is a broad-spectrum exportin and a nuclear import receptor., Aksu M, Pleiner T, Karaca S, Kappert C, Dehne HJ, Seibel K, Urlaub H, Bohnsack MT, Görlich D., J Cell Biol. July 2, 2018; 217 (7): 2329-2340.            


XMAP215 is a microtubule nucleation factor that functions synergistically with the γ-tubulin ring complex., Thawani A, Kadzik RS, Petry S., Nat Cell Biol. May 1, 2018; 20 (5): 575-585.


Xenopus laevis Oocytes Preparation for in-Cell EPR Spectroscopy., John L, Drescher M., Bio Protoc. April 5, 2018; 8 (7): e2798.            


Xenopus ADAM19 regulates Wnt signaling and neural crest specification by stabilizing ADAM13., Li J, Perfetto M, Neuner R, Bahudhanapati H, Christian L, Mathavan K, Bridges LC, Alfandari D, Wei S., Development. April 4, 2018; 145 (7):                         


Xenopus embryos to study fetal alcohol syndrome, a model for environmental teratogenesis., Fainsod A, Kot-Leibovich H., Biochem Cell Biol. April 1, 2018; 96 (2): 77-87.


Xenopus laevis oocyte as a model for the study of the cytoskeleton., Carotenuto R, Tussellino M., C R Biol. April 1, 2018; 341 (4): 219-227.


Xenopus: An alternative model system for identifying muco-active agents., Sim HJ, Kim SH, Myung KJ, Kwon T, Lee HS, Park TJ., PLoS One. February 14, 2018; 13 (2): e0193310.              


Xenopus-derived glucagon-like peptide-1 and polyethylene-glycosylated glucagon-like peptide-1 receptor agonists: long-acting hypoglycaemic and insulinotropic activities with potential therapeutic utilities., Han J, Fei Y, Zhou F, Chen X, Zhang Y, Liu L, Fu J., Br J Pharmacol. February 1, 2018; 175 (3): 544-557.


Xenbase: a genomic, epigenomic and transcriptomic model organism database., Karimi K, Fortriede JD, Lotay VS, Burns KA, Wang DZ, Fisher ME, Pells TJ, James-Zorn C, Wang Y, Ponferrada VG, Chu S, Chaturvedi P, Zorn AM, Vize PD., Nucleic Acids Res. January 4, 2018; 46 (D1): D861-D868.        


Xenopus: An Undervalued Model Organism to Study and Model Human Genetic Disease., Blum M, Ott T., Cells Tissues Organs. January 1, 2018; 205 (5-6): 303-313.


X-FaCT: Xenopus-Fast Clearing Technique., Affaticati P, Le Mével S, Jenett A, Rivière L, Machado E, Mughal BB, Fini JB., Methods Mol Biol. January 1, 2018; 1865 233-241.


Xenopus Models of Cancer: Expanding the Oncologist's Toolbox., Hardwick LJA, Philpott A., Front Physiol. January 1, 2018; 9 1660.  


Xenopus Hybrids Provide Insight Into Cell and Organism Size Control., Gibeaux R, Miller K, Acker R, Kwon T, Heald R., Front Physiol. January 1, 2018; 9 1758.        


Xenopus metamorphosis as a model to study thyroid hormone receptor function during vertebrate developmental transitions., Buchholz DR., Mol Cell Endocrinol. December 25, 2017; 459 64-70.


Xenopus laevis as a Model Organism for the Study of Spinal Cord Formation, Development, Function and Regeneration., Borodinsky LN., Front Neural Circuits. November 23, 2017; 11 90.  


Xenopus and the art of oxygen maintenance., Tattersall GJ, Burggren WW., J Exp Biol. November 15, 2017; 220 (Pt 22): 4084-4087.


Xenopus-FV3 host-pathogen interactions and immune evasion., Jacques R, Edholm ES, Jazz S, Odalys TL, Francisco JA., Virology. November 1, 2017; 511 309-319.


Xenopus Tadpole Tissue Harvest., Patmann MD, Shewade LH, Schneider KA, Buchholz DR., Cold Spring Harb Protoc. November 1, 2017; 2017 (11): pdb.prot097675.


Xenopus GLP-1-inspired discovery of novel GLP-1 receptor agonists as long-acting hypoglycemic and insulinotropic agents with significant therapeutic potential., Han J, Chen X, Wang Y, Fei Y, Zhou F, Zhang Y, Liu L, Si P, Fu J., Biochem Pharmacol. October 15, 2017; 142 155-167.


Xenopus pitx3 target genes lhx1 and xnr5 are identified using a novel three-fluor flow cytometry-based analysis of promoter activation and repression., Hooker LN, Smoczer C, Abbott S, Fakhereddin M, Hudson JW, Crawford MJ., Dev Dyn. September 1, 2017; 246 (9): 657-669.                    


Xenopus egg extract: A powerful tool to study genome maintenance mechanisms., Hoogenboom WS, Klein Douwel D, Knipscheer P., Dev Biol. August 15, 2017; 428 (2): 300-309.


Xenopus laevis M18BP1 Directly Binds Existing CENP-A Nucleosomes to Promote Centromeric Chromatin Assembly., French BT, Westhorpe FG, Limouse C, Straight AF., Dev Cell. July 24, 2017; 42 (2): 190-199.e10.                


Xenopus genomic data and browser resources., Vize PD, Zorn AM., Dev Biol. June 15, 2017; 426 (2): 194-199.  


XenMine: A genomic interaction tool for the Xenopus community., Reid CD, Karra K, Chang J, Piskol R, Li Q, Li JB, Cherry JM, Baker JC., Dev Biol. June 15, 2017; 426 (2): 155-164.          


Xenopus laevis Kif18A is a highly processive kinesin required for meiotic spindle integrity., Möckel MM, Heim A, Tischer T, Mayer TU., Biol Open. April 15, 2017; 6 (4): 463-470.        


Xenopus: leaping forward in kidney organogenesis., Krneta-Stankic V, DeLay BD, Miller RK., Pediatr Nephrol. April 1, 2017; 32 (4): 547-555.


Xenopus Piwi proteins interact with a broad proportion of the oocyte transcriptome., Toombs JA, Sytnikova YA, Chirn GW, Ang I, Lau NC, Blower MD., RNA. April 1, 2017; 23 (4): 504-520.


Xenopus Vasa Homolog XVLG1 is Essential for Migration and Survival of Primordial Germ Cells., Shimaoka K, Mukumoto Y, Tanigawa Y, Komiya T., Zoolog Sci. April 1, 2017; 34 (2): 93-104.


Xenopus laevis neuronal cell adhesion molecule (nrcam): plasticity of a CAM in the developing nervous system., Lokapally A, Metikala S, Hollemann T., Dev Genes Evol. January 1, 2017; 227 (1): 61-67.  


Xenopus extract approaches to studying microtubule organization and signaling in cytokinesis., Field CM, Pelletier JF, Mitchison TJ., Methods Cell Biol. January 1, 2017; 137 395-435.


Xenopus, an ideal model organism to study laterality in conjoined twins., Tisler M, Schweickert A, Blum M., Genesis. January 1, 2017; 55 (1-2):         


Xenopus as a model organism to study heterotrimeric G-protein pathway during collective cell migration of neural crest., Toro-Tapia G, Villaseca S, Leal JI, Beyer A, Fuentealba J, Torrejón M., Genesis. January 1, 2017; 55 (1-2):   


Xenopus as a model for studies in mechanical stress and cell division., Stooke-Vaughan GA, Davidson LA, Woolner S., Genesis. January 1, 2017; 55 (1-2):   


Xenopus egg extract to study regulation of genome-wide and locus-specific DNA replication., Raspelli E, Falbo L, Costanzo V., Genesis. January 1, 2017; 55 (1-2):       


Xenopus laevis as a model system to study cytoskeletal dynamics during axon pathfinding., Slater PG, Hayrapetian L, Lowery LA., Genesis. January 1, 2017; 55 (1-2):   


Xenopus laevis as Model System to Study DNA Damage Response and Replication Fork Stability., Sannino V, Pezzimenti F, Bertora S, Costanzo V., Methods Enzymol. January 1, 2017; 591 211-232.


Xenopus Oocytes: Optimized Methods for Microinjection, Removal of Follicular Cell Layers, and Fast Solution Changes in Electrophysiological Experiments., Maldifassi MC, Wongsamitkul N, Baur R, Sigel E., J Vis Exp. December 31, 2016; (118):


Xenopus laevis and Emerging Amphibian Pathogens in Chile., Soto-Azat C, Peñafiel-Ricaurte A, Price SJ, Sallaberry-Pincheira N, García MP, Alvarado-Rybak M, Cunningham AA., Ecohealth. December 1, 2016; 13 (4): 775-783.


Xenopus laevis Nkx5.3 and sensory organ homeobox (SOHo) are expressed in developing sensory organs and ganglia of the head and anterior trunk., Kelly LE, El-Hodiri HM., Dev Genes Evol. November 1, 2016; 226 (6): 423-428.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 ???pagination.result.next???